

WaterNet short course Financing of Water Infrastructure projects:

Optimising finance sources

Jaap Arntzen 11th April 2018, Johannesburg, South Africa

Structure of presentation

- Identification of investment needs
- Optimising financing; whose perspective?
- Possible funding sources
- Project funding models
- Investor's perspective
- Lesotho Highland Water Development Project

Identification of infrastructure needs

- **Current** infrastructure:
 - Maintenance & rehabilitation
 - Reducing UAfW/ NRW
 - What measures are prioritised?
- Planned infrastructure:
 - Does it increase the safe yields of the water infrastructure?
 - Does it minimize the increase in unit water costs (e.g. marg. supply costs)
 - What kind of infrastructure is prioritized?
 - Dams, aquifers, transfer schemes, conjunctive use, recycling plants, desalination etc.

Optimising of what?

- Water sector country (economic):
 - Optimum varies from case to case.

There is no "one-size-fits-all" solution, and each financing model has to be structured to suit the specific circumstances. This is particularly the case for water infrastructure, where individual projects are highly sitespecific and often involve a number of stakeholders (Head, 2006, p.2).

- Ensure a sustainable water supply for domestic and productive use to ensure sustainable development.
 - Economic: lowest supply costs cheapest source of finance
 - Social: Affordability and Access (SDG6)
 - Environment: Maintenance of ecosystems & minimising environmental externalities and foregone future benefits
- Investor (financial):
 - Returns taking into account opportunity costs of water investments

Possible financial sources

- Public funds: 3 Ts
 - Tariffs: widely considered most efficient, but affordability and collection issues
 - Transfers-subsidies unsustainable & growing competition from other sectors (e.g. health & education)
- Private funds: investments, loans & grants.
- Public-private sector partnerships: balancing 3 Rs.
 - Responsibilities: how are responsibilities shared?
 - Risks: political, commercial, project
 - Rewards: gap between financial & economic returns
- Observations:
 - Public funds can leverage private funds
 - Private funding requires solid financing proposals

Private foundations gave USD 23.9 billion for development from 2013 to 2015 (OECD, 2018)

Project finance model

Water infrastructure projects are long term projects often with high risks & low returns. Unattractive for private investors?

- Government needs to decide whether:
 - the project is suitable for private sector participation;
 - the physical assets should be in public or private ownership;
 - there should be a public shareholding (private company); or private funding (public project).
- Decision during early project preparation.
- Requirements for governments. Conduct:
 - Technical & economic feasibility studies
 - Environmental & social impact assessment
 - Defining project structure, financing & procurement

More attractive projects: hydropower, NRW reduction & wastewater treatment & re-use,

Source: Head, 2006, p31.

Types of water infrastructure development

- Private sector development:
 - BOOT: Build, Own, Operate and Transfer (after e.g. 15-25 years)
 - BOT: Build, Operate & Transfer (after e.g. 15-25 years)
 - BOS: Build, Operate & Sell (after e.g. 5 years)
 - ROM: Rehabilitate, Operate & Maintain (e.g. for old hydropower schemes)
- Public sector development:
 - Parastatal:
 - Traditional public projects by government
- Public-private sector partnerships:
 - Public shareholding in private company
 - Private investments in parastatal

Issues to consider for investments

- Economic & financial viability:
 - Bridging gaps between economic and financial viability through subsidies and project restructuring
- Risk profile: political, commercial and project risks
 - Risk mitigation and balancing remaining risks and rewards
 - Risk sharing between private and public sector
- Environmental & social sustainability:
 - Adherence to international guidelines such:
 - IHA Sustainability guidelines (hydropower)
 - Equator principles for large projects of US\$50 million + (sustainability standards for the financial service industry). Covers most of the international commercial funding. Classifies projects based on environmental & social risks

Accessibility of funding sources

- Depends on the funding sources requirements; and
- Situation of the country & institution in need of finance (e.g. national governments, local water suppliers, parastatals etc.)
- Local authorities often limited direct access to funding

Case study lessons for private financing (Read, 2006)

- Private projects require a strong sponsor with sufficient financial resources & resilience
- Private sector may succeed where public sector fails
- Exchange rates are a major concern & risk. Mitigation: use of local currencies
- Typical equity/debt ratio of 30/70; higher equity with high risk projects
- Most common source of commercial funding: international banks and multilateral development banks.
- Regional markets can increase the bankability of projects
- Refinancing of operational projects can reduce the costs

Key determinants of successful private sector investments

- Support of international financial institutions (esp. MDBs)
- Pro-active government: project preparation, enabling environment & partnership
- Well prepared financial proposals needed to convince private investor

Investor perspective: cash management models

- Examples:
 - Baumol's model of cash and inventory management:
 - Wilson's Economic order quantity model.
- In brief:
 - Consider the opportunity costs of cash and the transaction costs and aim to minimise these costs
 - Models have various assumptions: such as constant and predictable revenue flow.

Lesotho Highland Water Development project

- Source:Chris Head (2006). The Financing of Water Infrastructure. A Review of Case Studies. Bank Netherlands water partnership programme.
- Project: Dams for hydropower in Lesotho and water transfers to South Africa.
- Total costs (phase 1 completed in 2004): US\$2.8 billion generating 72MW power for Lesotho and 29m³/s water for SA. Phase 2 increase transfer to 70m³/s
- Project to complex and risky for private sector. Developed as public project with mixed funding
- Implementation through the Lesotho Highland Development Authority (parastatal); the Trans Caledon Tunnel Authority, manages South Africa's obligations and pays the royalties for delivered water
- LHDA raised all finances; SA government provided guarantees for all loans.
- Benefits:
 - South Africa: extra and cheaper water for Gauteng (est. savings for water users of \$30 million p.a. (EIB)
 - Lesotho: hydropower and royalties (10% of government revenues & 4% of GDP).

Financing phase 1A (1990-98)

- Strategy:
 - Use concessionary funds where they were available (only for Lesotho).
 - Maximising foreign borrowing to reduce pressure on foreign reserves.
 - Sovereign Guarantees by the SA Government (through a trust fund).
 - Contractor-driven financing with the responsibility for finding financiers left to the contractor.
 - Access to funding limited by boycott of apartheid South Africa, which also faced foreign exchange problems
- Results:
 - 36% international concessionary funding (through Lesotho)
 - 64% local funding (exports credits and water bonds)
 - 85% of finance was underwritten by SA government.

Financing of Phase 1b (1995-2003)

- Contractor financing was no longer linked to commercial funding
- Over 10% of expenditures go to environmental and social components.
- More funding options post-apartheid and with visible results of Phase 1A

Literature

- Head, C (2006). The financing of water infrastructure: a review of case studies. BNWPP.
- IHA guidelines: download from <u>www.hydropower.org</u>.
- Equator principles: download from <u>www.equator-network.org</u>.

THANK YOU

Contact details: Dr. Jaap Arntzen jarntzen@car.org.bw info@car.org.bw

www.car.org